Feature Extraction for Emg Based Prostheses Control
نویسندگان
چکیده
The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG) signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as timeand frequency-domain properties. Time series analysis using Auto Regressive (AR) model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملTechniques for Feature Extraction from EMG Signal
The myoelectric signal (MES) is one of the biosignals utilized in helping humans to control equipments. For this we required to recognize the hand movement. In this direction the first step is feature extraction. The optimal feature is important for the achievement in EMG analysis and control. By this extracted feature we reduce the computational cost of a multifunction myoelectric control syst...
متن کاملNeurofuzzy Logic as a Control Algorithm for an Externally Powered Multifunctional Hand Prosthesis
INTRODUCTION We are developing a controller for a multifunctional hand prosthesis based upon multiple surface electromyograms (sEMG) using neurofuzzy logic technology. The sEMG signal is successfully used as a means of control in current commercially available myoelectric prostheses. However, these are either single degree-of-freedom (DOF) devices or sequential controlled devices with locking m...
متن کاملAn Investigation of Electromyographic (emg) Control of Dextrous Hand Prostheses for Transradial Amputees
There are many amputees around the world who have lost a limb through conflict, disease or an accident. Upper-limb prostheses controlled using surface Electromyography (sEMG) offer a solution to help the amputees; however, their functionality is limited by the small number of movements they can perform and their slow reaction times. Pattern recognition (PR)-based EMG control has been proposed t...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013